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I. The Lindenstrauss Problem
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L1-preduals: De�nition

De�nition. A Banach space X whose dual X ′ is isometrically
isomorphic to L1(µ) for some positive measure µ is called an
L1-predual space or a Lindenstrauss spaces.

The Lindenstrauss Problem:

Classify and characterize the L1-predual Banach spaces.

J. Lindenstrauss, Extension of compact operators, Mem.
Amer. Math. Soc., Vol. 48, Provindence, 1964 (Theorem 6.1).
J. Lindenstrauss and D. E. Wulbert, On the Classi�cation
of the Banach Spaces whose Duals are L1 Spaces, J. Funct.
Anal., 4 (1969), 332-349.
H. Elton Lacey, The Isometric Theory of Classical Banach
Spaces, Springer, Berlin, 1974 (Chapter 7: L1-Predual Spaces).
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L1-preduals: Historical Remarks

A. Grothendieck, Une caract�erisation vectorielle m�etrique des
espaces L1, Canadian J. Math. 7 (1955), 552-561.

Grothendieck conjectured that a Banach space is an L1-predual
i� it is isometric to a subspace of C (K ) of the form:

{f ∈ C (K ) : f (k1
α) = λαf (k2

α); k1
α, k

2
α ∈ K ;λα ∈ R; α ∈ A}.

De�nition. A BS X is called a Grothendieck space (or
G -spaces) if it admits the above functional representation.

A G -space is an L1-predual. The converse is false as
demonstrated by Lindenstrauss in his memoir.

The Grothendieck conjecture is true for spaces X with
extB(X ′) w∗-compact.
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L1-preduals: Characterization

Theorem (Lindenstrauss, 1964). For a Banach space X the
following assertions are equivalent:
(1) X is an L1-predual space.

(2) Every family of 4 pairwise intersecting closed balls in X
has a non-empty intersection.

(3) Every compact operator T : Y → X has, for every ε > 0
and Banach spaces Y ,Z , Z ⊃ Y , a compact extension
T̂ : Z → X with ‖T̂‖ ≤ (1 + ε)‖T‖.
In complex case:
(2′) Every family of 4 balls in X such that any 3 of them have
a non-empty intersection, has a non-empty intersection.

A. Lima, Complex Banach spaces whose duals are L1-spaces,
Israel J. Math., 24:1 (1976), 59-72.
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Chebyshev Radius and Centerable Sets

De�nition. Let X be a Banach space and A ⊂ X . The
diameter δ(A) of A is de�ned as

δ(A) = sup{‖a− b‖ : a, b ∈ A}.

De�nition. The Chebyshev radius r(A) of A is de�ned as

r(A) = inf
x∈X

r(A, x); r(A, x) = sup
a∈A
‖x − a‖ (x ∈ X ).

It is easily seen that δ(A) ≤ 2r(A).

De�nition. If δ(A) = 2r(A), then A is said to be centerable.

E. V. Nikitenko and Yu. G. Nikonorov, The extreme
polygons for the self Chebyshev radius of the boundary, 2023,
arXiv:2301.03218 [math.MG]
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Ñenterability and Non-centerability: Examples

4 is an equilateral triangle with side length 1;
δ(4) is the diameter of 4;

r(4) is the Chebyshev radius of 4.

‖(x , y)‖2:=
√
x2 + y2; ‖(x , y)‖∞:= max{|x |, |y |}.

‖(x , y)‖1:= |x |+ |y |;

(R2, ‖ · ‖2) (R2, ‖ · ‖1) (R2, ‖ · ‖∞)

δ(4) = 1 δ(4) = 1+
√

3
2 δ(4) = 1 = 2r(4)

< 2√
3

= 2r(4) <
√

3 = 2r(4)
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Characterization of Inner Product Spaces

De�nition. The relative Chebyshev radius of A (w.r. B ⊂ X ):

rB(A) = inf{r(A, x) : x ∈ B}.

Theorem (Garkavi, 1964; Klee, 1968). For a normed space
X the following assertions are equivalent:

(1) X is an inner product space.

(2) rY (A) = rX (A) for every 2-dimensional subspace Y of X
and every bounded A ⊂ Y .

(3) rY (∆) = rX (∆) for every 2-dimensional subspaee Y of X
and every triplet ∆ = {y1, y2, y3} ⊂ Y .

D. Amir, Characterizations of Inner Product Spaces
Birkh�auser, Basel, 1986 (Chap. 15).
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Characterization of L1-preduals

Y. Duan and B.-L. Lin, Characterizations of L1-predual
spaces by centerable subsets, Comment. Math. Univ. Carolin.
48:2 (2007) 239-243.

Theorem. For a real BS X the following are equivalent:

(1) X is an L1-predual space.

(2) Every four-point subset of X is centerable.

(3) Every �nite subset of X is centerable.

(4) Every compact subset of X is centerable.

Remarks:
X The result is true also for complex Banach spaces.

X (1)⇐⇒ (3) is due to T. S. S. R. K Rao (2002).

X This result cannot be sharpened anymore: i.e., the
centerability of every three-point subset of a real or complex
Banach space X does not imply that X is an L1-predual space.
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II. Injective Banach Lattices and Their Preduals
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Banach Lattices

De�nition. A vector lattice (VL for short) is a real vector
space X equipped with a partial order ≤ for which there exist

X x ∨ y := sup{x , y}, the supremum,

X x ∧ y := inf{x , y}, the in�mum,

for all vectors x , y ∈ X and such that the positive cone

X X+ := {x ∈ X : x ≥ 0} of X have the properties

X X+ + X+ ⊂ X+, R+ · X+ ⊂ X+.

De�nition. A Banach lattice (BL for short) is a Banach space
which is also a VL and the order is connected to the norm by

X |x | ≤ |y | =⇒ ‖x‖ ≤ ‖y‖ (monotonicity),

where the absolute value (modulus) is de�ned as
X|x | := x ∨ (−x).
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Banach Lattices: AM-spaces

De�nition. A Banach lattice X is called AM-space if

‖x ∨ y‖ = max{‖x‖, ‖y‖} for all positive x , y ∈ X .

Example. The space C (K ) of continuous functions on a
compact Hausdor� space K with the supremum norm

‖f ‖∞:= sup{|f (t)| : t ∈ K} (f ∈ C (K )).

C (K ) is order complete i� K is extremally disconnected.

De�nition. 0 ≤ 1 ∈ X is a strong order unit if 0 ∈ int[−1,1]
where [−1,1] := {x ∈ X : −1 ≤ x ≤ 1} is an order interval.

Theorem (Br. Kre��ns�Kakutani, 1941). An arbitrary
AM-space with strong order unit is lattice isometric to C (K )
for some compact Hausdor� space K .

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



Banach Lattices: AM-spaces

De�nition. A Banach lattice X is called AM-space if

‖x ∨ y‖ = max{‖x‖, ‖y‖} for all positive x , y ∈ X .

Example. The space C (K ) of continuous functions on a
compact Hausdor� space K with the supremum norm

‖f ‖∞:= sup{|f (t)| : t ∈ K} (f ∈ C (K )).

C (K ) is order complete i� K is extremally disconnected.

De�nition. 0 ≤ 1 ∈ X is a strong order unit if 0 ∈ int[−1,1]
where [−1,1] := {x ∈ X : −1 ≤ x ≤ 1} is an order interval.

Theorem (Br. Kre��ns�Kakutani, 1941). An arbitrary
AM-space with strong order unit is lattice isometric to C (K )
for some compact Hausdor� space K .

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



Banach Lattices: AM-spaces

De�nition. A Banach lattice X is called AM-space if

‖x ∨ y‖ = max{‖x‖, ‖y‖} for all positive x , y ∈ X .

Example. The space C (K ) of continuous functions on a
compact Hausdor� space K with the supremum norm

‖f ‖∞:= sup{|f (t)| : t ∈ K} (f ∈ C (K )).

C (K ) is order complete i� K is extremally disconnected.

De�nition. 0 ≤ 1 ∈ X is a strong order unit if 0 ∈ int[−1,1]
where [−1,1] := {x ∈ X : −1 ≤ x ≤ 1} is an order interval.

Theorem (Br. Kre��ns�Kakutani, 1941). An arbitrary
AM-space with strong order unit is lattice isometric to C (K )
for some compact Hausdor� space K .

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



Banach Lattices: AM-spaces

De�nition. A Banach lattice X is called AM-space if

‖x ∨ y‖ = max{‖x‖, ‖y‖} for all positive x , y ∈ X .

Example. The space C (K ) of continuous functions on a
compact Hausdor� space K with the supremum norm

‖f ‖∞:= sup{|f (t)| : t ∈ K} (f ∈ C (K )).

C (K ) is order complete i� K is extremally disconnected.

De�nition. 0 ≤ 1 ∈ X is a strong order unit if 0 ∈ int[−1,1]
where [−1,1] := {x ∈ X : −1 ≤ x ≤ 1} is an order interval.

Theorem (Br. Kre��ns�Kakutani, 1941). An arbitrary
AM-space with strong order unit is lattice isometric to C (K )
for some compact Hausdor� space K .

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



Banach Lattices: AL-spaces

De�nition. A Banach lattice X is an AL-space, provided

‖x + y‖ = ‖x‖+ ‖y‖ for all positive x , y ∈ X .

Example. Given a measure space (Ω,Σ, µ), denote by
L0(Ω,Σ, µ), L1(Ω,Σ, µ), and L∞(Ω,Σ, µ) respectively the
vector lattice of (classes of equivalence of) all measurable
integrable, essentially bounded functions on Ω.

Evidently, L1(µ) := L1(Ω,Σ, µ) is an AL-space;

L∞(µ) := L∞(Ω,Σ, µ) is an AM-space.

Theorem (Kakutani, 1941). An AL-space X is lattice
isometric to L1(Ω,Σ, µ) for some measure space (Ω,Σ, µ).

Remark. Any of the vector lattices L1(Ω,Σ, µ), L0(Ω,Σ, µ),
and L∞(Ω,Σ, µ) is order complete i� (Ω,Σ, µ) is localizable.
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Injective Banach Lattices: De�nition

De�nition. An injective Banach lattice is a real BL X :
(∀Y ) (∀Y0) (∀T0)

Y0,Y ∈ (BL)
Y0 is a closed sublattice of Y

0 ≤ T0 ∈ L(Y0,X )

 =⇒


(∃T )

0 ≤ T ∈ L(Y ,X )
T |X0 = T0

‖T‖ = ‖T0‖

De�nition. X is an injectie Banach lattice if, whenever X is
lattice isometrically imbedded into a BL Y , there is a positive
contractive projection Y → X .
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Injective Banach Lattices: AL-spaces and AM-spaces

Lotz was the �rst who examined the IBL in his work

H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100.

Theorem (Abramovich, 1971; Lotz, 1975) A Dedekind
complete AM-space with unit is an IBL. Equivalently, C (K ) is
an IBL, whenever K is extremally disconnected Hausdor�
compact space.

Theorem (Lotz, 1975). Every AL-space is an IBL.
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Injective Banach Lattices: Historical remarks

D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.

� The �nite order IP ⇐⇒ The splitting property.

� A BL X has the splitting property ⇐⇒ X ′′ is an IBL.

R. Haydon, Math. Z. 156 (1977), 19-47.

� Discovered that an IBL has a mixed AM-AL-structure.

� Proved three representation theorems for IBL.

A. G. Kusraev, Siberian Math. J. 25:1 (2015), 57-65.

� Boolean valued approach to injective Banach lattices.

W. Arendt, G. Buskes,
J. Lindenstrauss, L. Tzafriri,

P. J. Mangheni, A. Wickstead.
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Injective Banach Lattices: Representation

De�nition A measure m : Σ→ C (K ) is called modular if
there is a unital algebra-homomorphism π : C (K )→ L∞(m)
such that the relation holds:∫

(πf ) · g dm = f ·
∫
g dm (f ∈ C (K ), g ∈ L1(m)).

De�nition A measure m : Σ→ C (K ) is called Maharam if m
is modular and L∞(m) is Dedekind complete.

Theorem (Haydon, 1977). The following assertions hold:

(1) L1(m) is an IBL for any Maharam C (K )-measure m.

(2) For every IBL X there exist a Stonian space K , a σ-algebra
Σ, and a Maharam measure m : Σ→ C (K ) such that X is
isometrically lattice isomorphic to L1(m).
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A Lindenstrauss Type Problem for IBL

Problem: Classify and characterize the predual to IBS.

A. G. Kusraev and A.W.Wickstead, Some Problems
Concerning Operators on Banach Lattices. Vladikavkaz, 2016.
(Preprint / SMI VSC RAS; Problem 5.15).

Some related publications:
X A.G.Kusraev, Boolean valued analysis and injective
Banach lattices, Dokl. Ross. Akad. Nauk 444 (2012), 143-145.
X A.G.Kusraev, Injective Banach lattices: a survey, Eurasian
Math. J. 5 2014, 58-79.
X A.G.Kusraev, Concrete representation of injective Banach
lattices, Math. Meth. Appl. Sci., (2020), 1-10.
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III. Boolean Valued Transfer Principle
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What Is Boolean Valued Analysis?

Boolean valued analysis is a branch of functional analysis
which uses a special model-theoretic technique and consists in
studying the properties of a mathematical object by means of
comparison between its representations in two di�erent
set-theoretic models whose construction utilizes distinct
Boolean algebras.

The von Neumann universe (Cantorian paradise) V and a
specially-trimmed Boolean valued universe V(B) are taken as
these models.

The comparative analysis requires some ascending�descending
machinery to carry out the interplay between V and V(B).
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Interplay Between V and V(B)

L0(µ):= L0(Ω,Σ, µ), the space (of classes) of integrable
functions with respect to a measure µ : Σ→ R.

B:= Σ/µ−1(0) Boolean algebra of all measurable sets
modulo µ-null sets.

[[ϕ]] ∈ B is the Boolean truth value of ZFC formuls ϕ
.
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A Boolean-Valued Transfer Principle

Theorem (Kusraev, 2012). Every IBL embeds into an

appropriate Boolean-valued model, becoming an AL-space.

A Transfer Principle. Each theorem about the AL-space
within Zermelo�Fraenkel set theory has its counterpart for the
original injective Banach lattice interpreted as a
Boolean-valued AL-space.

The Machinery. Translation of theorems from AL-spaces to
injective Banach lattices is carried out by appropriate general
operations and principles of Boolean-valued analysis.

A. G. Kusraev and S. S. Kutateladze:
X Boolean Valued Analysis, Dordrecht, Kluwer (1999).

X Introduction to Boolean Valued Analysis,
Moscow, Nauka (2005) [Russian].

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



A Boolean-Valued Transfer Principle

Theorem (Kusraev, 2012). Every IBL embeds into an

appropriate Boolean-valued model, becoming an AL-space.

A Transfer Principle. Each theorem about the AL-space
within Zermelo�Fraenkel set theory has its counterpart for the
original injective Banach lattice interpreted as a
Boolean-valued AL-space.

The Machinery. Translation of theorems from AL-spaces to
injective Banach lattices is carried out by appropriate general
operations and principles of Boolean-valued analysis.

A. G. Kusraev and S. S. Kutateladze:
X Boolean Valued Analysis, Dordrecht, Kluwer (1999).

X Introduction to Boolean Valued Analysis,
Moscow, Nauka (2005) [Russian].

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



A Boolean-Valued Transfer Principle

Theorem (Kusraev, 2012). Every IBL embeds into an

appropriate Boolean-valued model, becoming an AL-space.

A Transfer Principle. Each theorem about the AL-space
within Zermelo�Fraenkel set theory has its counterpart for the
original injective Banach lattice interpreted as a
Boolean-valued AL-space.

The Machinery. Translation of theorems from AL-spaces to
injective Banach lattices is carried out by appropriate general
operations and principles of Boolean-valued analysis.

A. G. Kusraev and S. S. Kutateladze:
X Boolean Valued Analysis, Dordrecht, Kluwer (1999).

X Introduction to Boolean Valued Analysis,
Moscow, Nauka (2005) [Russian].

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



A Boolean-Valued Transfer Principle

Theorem (Kusraev, 2012). Every IBL embeds into an

appropriate Boolean-valued model, becoming an AL-space.

A Transfer Principle. Each theorem about the AL-space
within Zermelo�Fraenkel set theory has its counterpart for the
original injective Banach lattice interpreted as a
Boolean-valued AL-space.

The Machinery. Translation of theorems from AL-spaces to
injective Banach lattices is carried out by appropriate general
operations and principles of Boolean-valued analysis.

A. G. Kusraev and S. S. Kutateladze:
X Boolean Valued Analysis, Dordrecht, Kluwer (1999).

X Introduction to Boolean Valued Analysis,
Moscow, Nauka (2005) [Russian].

A. G. Kusraev and S. S. Kutateladze The Lindenstrauss Problem and Boolean Valued Analysis



L-Projections and M-Projections

De�nition. A projection π on a Banach space X is said to be:

an M-projection if ‖x‖ = ‖πx‖+ ‖x − πx‖ for all x ∈ X ;

an L-projection if ‖x‖ = max{‖πx‖, ‖x − πx‖} for all x ∈ X .

Notation. PL(X ) and PM(X ) denote the sets of all
L-projections and M-projections on X .

A Boolean algebra of projections on X is a commuting set B
of linear norm one projections in X with:

π ∧ ρ := π ◦ ρ, π ∨ ρ := π + ρ− π ◦ ρ, π⊥ := IX − π.
Theorem (Cunningham, 1960). For a BS space X (1)− (3)
hold:

(1) PL(X ) is a complete (Bad�e complete) Boolean algebra.

(2) PM(X ) is a (generally not complete) Boolean algebra.

(3) If X ′ is the dual of X then PM(X ′) is isomorphic to PL(X ).
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Some De�nitions

Notation. For a nonempty A ⊂ X and nonzero π ∈ B denote:

δπ(A) = sup{‖π(a− b)‖ : a, b ∈ A} (π-diameter of A).

rπ(A) = infx∈X rπ(A, x) (Chebyshev π-radius of A);

rπ(A, x) = supa∈A ‖π(x − a)‖ (for all x ∈ X ).

Proposition. It is easily seen that δπ(A) ≤ 2rπ(A).

De�nition. If δπ(A) = 2rπ(A) for all π ∈ B, then A is said to
be B-centerable.
Remark. If X ′ is an IBL then B = Σ/µ−1(0) and
L1(B, µ) := L1(Ω,Σ, µ) for some (Ω,Σ, µ).

De�nition. Denote B := PL(X ) and take a ∈ X and
r ∈ L1(B, µ). A B-cell in X is a set of the form

B(a, r) := {x ∈ X : ‖π(x − a)‖ ≤ ‖πr‖L for all π ∈ B}.
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δπ(A) = sup{‖π(a− b)‖ : a, b ∈ A} (π-diameter of A).

rπ(A) = infx∈X rπ(A, x) (Chebyshev π-radius of A);

rπ(A, x) = supa∈A ‖π(x − a)‖ (for all x ∈ X ).

Proposition. It is easily seen that δπ(A) ≤ 2rπ(A).

De�nition. If δπ(A) = 2rπ(A) for all π ∈ B, then A is said to
be B-centerable.
Remark. If X ′ is an IBL then B = Σ/µ−1(0) and
L1(B, µ) := L1(Ω,Σ, µ) for some (Ω,Σ, µ).

De�nition. Denote B := PL(X ) and take a ∈ X and
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Characterization via Intersection Property

Theorem. For a real Banach space X the following are equivalent:

(1) X ′ is an injective Banach lattice with
B := PM(X ′) ' PL(X ).

(2) Every collection of four mutually intersecting B-cells in X
has nonempty intersection.

(3) Every collection of four mutually intersecting B-cells in X
whose centers span a (B, 2)-dimensional subspace has
nonempty intersection.
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Characterization of IBL-Preduals

Theorem. For a real Banach space X the following are equivalent:

(1) X ′ is an IBL with B := M(X ′) ' PL(X ).

(2) Every four-point subset of X is B-centerable.
(3) Every �nite subset of X is B-centerable.
(4) Every B-bounded mix-compact subset of X is B-centerable.
(5) For every mix-compact subset A of X there exists a
partition of unity (πξ)ξ∈Ξ in B such that πξA is
πξB-centerable in πξX for all ξ ∈ Ξ.
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