The Lindenstrauss Problem and Boolean Valued Analysis

A. G. Kusraev and S. S. Kutateladze

Southern Mathematical institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences

October 25-27, 2023

Contents

- The Lindenstrauss Problem
- Injective Banach Lattices and Their Preduals
- Boolean Valued Transfer Principle
- This talk is based on the recent joint paper:
A. G. Kusraev and S. S. Kutateladze, Geometric characterization of preduals of injective Banach lattices, Indag. Math., 31:5 (2020), 863-878.
- \mathbb{N} : the set of all integers $n \geq 1$. \mathbb{R} : the set of all real numbers. $C(K)$: the Banach space of continuos functions on K. $L^{1}(\mu)$: the Banach space of μ-integrable functions.

Contents

- The Lindenstrauss Problem
- Injective Banach Lattices and Their Preduals
- Boolean Valued Transfer Principle
- This talk is based on the recent joint paper:
A. G. Kusraev and S. S. Kutateladze, Geometric characterization of preduals of injective Banach lattices, Indag. Math., 31:5 (2020), 863-878.
the set of all integers $n \geq 1$.
the set of all real numbers.
$C(K)$: the Banach space of continuos functions on K. $L^{1}(\mu)$: the Banach space of μ-integrable functions.
- The Lindenstrauss Problem
- Injective Banach Lattices and Their Preduals
- Boolean Valued Transfer Principle
- This talk is based on the recent joint paper:
A. G. Kusraev and S. S. Kutateladze, Geometric characterization of preduals of injective Banach lattices, Indag. Math., 31:5 (2020), 863-878.
- \mathbb{N} : the set of all integers $n \geq 1$.
\mathbb{R} : the set of all real numbers.
$C(K)$: the Banach space of continuos functions on K. $L^{1}(\mu)$: the Banach space of μ-integrable functions.

I. The Lindenstrauss Problem

L^{1}-preduals: Definition

- Definition. A Banach space X whose dual X^{\prime} is isometrically isomorphic to $L^{1}(\mu)$ for some positive measure μ is called an L^{1}-predual space or a Lindenstrauss spaces.
- The Lindenstrauss Problem:

Classify and characterize the L^{1}-predual Banach spaces.

- J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964 (Theorem 6.1). J. Lindenstrauss and D. E. Wulbert, On the Classification of the Banach Spaces whose Duals are L^{1} Spaces, J. Funct. Anal., 4 (1969), 332-349.
H. Elton Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974 (Chapter 7: L¹-Predual Spaces)

L^{1}-preduals: Definition

- Definition. A Banach space X whose dual X^{\prime} is isometrically isomorphic to $L^{1}(\mu)$ for some positive measure μ is called an L^{1}-predual space or a Lindenstrauss spaces.
- The Lindenstrauss Problem:

Classify and characterize the L^{1}-predual Banach spaces.

- J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964 (Theorem 6.1). J. Lindenstrauss and D. E. Wulbert, On the Classification of the Banach Spaces whose Duals are L^{1} Spaces, J. Funct. Anal., 4 (1969), 332-349.
H. Elton Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974 (Chapter 7: L¹-Predual Spaces)

L^{1}-preduals: Definition

- Definition. A Banach space X whose dual X^{\prime} is isometrically isomorphic to $L^{1}(\mu)$ for some positive measure μ is called an L^{1}-predual space or a Lindenstrauss spaces.
- The Lindenstrauss Problem:

Classify and characterize the L^{1}-predual Banach spaces.

- J. Lindenstrauss, Extension of compact operators, Mem.

Amer. Math. Soc., Vol. 48, Provindence, 1964 (Theorem 6.1). J. Lindenstrauss and D. E. Wulbert, On the Classification of the Banach Spaces whose Duals are L^{1} Spaces, J. Funct. Anal., 4 (1969), 332-349.
H. Elton Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974 (Chapter 7: L1-Predual Spaces).

L^{1}-preduals: Historical Remarks

- A. Grothendieck, Une caractérisation vectorielle métrique des espaces L^{1}, Canadian J. Math. 7 (1955), 552-561.
- Grothendieck conjectured that a Banach space is an L^{1}-predual iff it is isometric to a subspace of $C(K)$ of the form:

- Definition. A BS X is called a Grothendieck space (or G-spaces) if it admits the above functional representation.
- A G-space is an L^{1}-predual. The converse is false as demonstrated by Lindenstrauss in his memoir. The Grothendieck conjecture is true for spaces X with ext $B\left(X^{\prime}\right) w^{*}$-compact.

L^{1}-preduals: Historical Remarks

- A. Grothendieck, Une caractérisation vectorielle métrique des espaces L^{1}, Canadian J. Math. 7 (1955), 552-561.
- Grothendieck conjectured that a Banach space is an L^{1}-predual iff it is isometric to a subspace of $C(K)$ of the form:
$\left\{f \in C(K): f\left(k_{\alpha}^{1}\right)=\lambda_{\alpha} f\left(k_{\alpha}^{2}\right) ; k_{\alpha}^{1}, k_{\alpha}^{2} \in K ; \lambda_{\alpha} \in \mathbb{R} ; \alpha \in \mathrm{A}\right\}$.
- Definition. A BS X is called a Grothendieck space (or G-spaces) if it admits the above functional representation.
- A G-space is an L^{1}-predual. The converse is false as demonstrated by Lindenstrauss in his memoir.

The Grothendieck conjecture is true for spaces X with ext $B\left(X^{\prime}\right) w^{*}$-compact.

L^{1}-preduals: Historical Remarks

- A. Grothendieck, Une caractérisation vectorielle métrique des espaces L^{1}, Canadian J. Math. 7 (1955), 552-561.
- Grothendieck conjectured that a Banach space is an L^{1}-predual iff it is isometric to a subspace of $C(K)$ of the form:

$$
\left\{f \in C(K): f\left(k_{\alpha}^{1}\right)=\lambda_{\alpha} f\left(k_{\alpha}^{2}\right) ; k_{\alpha}^{1}, k_{\alpha}^{2} \in K ; \lambda_{\alpha} \in \mathbb{R} ; \alpha \in \mathrm{A}\right\}
$$

- Definition. A BS X is called a Grothendieck space (or G-spaces) if it admits the above functional representation.
- A G-space is an L^{1}-predual. The converse is false as demonstrated by Lindenstrauss in his memoir. The Grothendieck conjecture is true for spaces X with ext $B\left(X^{\prime}\right) w^{*}$-compact.
- A. Grothendieck, Une caractérisation vectorielle métrique des espaces L^{1}, Canadian J. Math. 7 (1955), 552-561.
- Grothendieck conjectured that a Banach space is an L^{1}-predual iff it is isometric to a subspace of $C(K)$ of the form:

$$
\left\{f \in C(K): f\left(k_{\alpha}^{1}\right)=\lambda_{\alpha} f\left(k_{\alpha}^{2}\right) ; k_{\alpha}^{1}, k_{\alpha}^{2} \in K ; \lambda_{\alpha} \in \mathbb{R} ; \alpha \in \mathrm{A}\right\}
$$

- Definition. A BS X is called a Grothendieck space (or G-spaces) if it admits the above functional representation.
- A G-space is an L^{1}-predual. The converse is false as demonstrated by Lindenstrauss in his memoir.
The Grothendieck conjecture is true for spaces X with ext $B\left(X^{\prime}\right) w^{*}$-compact.
- Theorem (Lindenstrauss, 1964). For a Banach space X the following assertions are equivalent:
(1) X is an L^{1}-predual space.
(2) Every family of 4 pairwise intersecting closed balls in X has a non-empty intersection.
(3) Every compact operator $T: Y \rightarrow X$ has, for every $\varepsilon>0$ and Banach spaces $Y, Z, Z \supset Y$, a compact extension $\hat{T}: Z \rightarrow X$ with $\|\hat{T}\| \leq(1+\varepsilon)\|T\|$.
- In complex case:
(2') Every family of 4 balls in X such that any 3 of them have
a non-empty intersection, has a non-empty intersection.
- A. Lima, Complex Banach spaces whose duals are L^{1}-spaces, Israel J. Math., 24:1 (1976), 59-72.
- Theorem (Lindenstrauss, 1964). For a Banach space X the following assertions are equivalent:
(1) X is an L^{1}-predual space.
(2) Every family of 4 pairwise intersecting closed balls in X has a non-empty intersection.
(3) Every compact operator $T: Y \rightarrow X$ has, for every $\varepsilon>0$ and Banach spaces $Y, Z, Z \supset Y$, a compact extension $\hat{T}: Z \rightarrow X$ with $\|\hat{T}\| \leq(1+\varepsilon)\|T\|$.
- In complex case:
(2') Every family of 4 balls in X such that any 3 of them have a non-empty intersection, has a non-empty intersection.

Israel J. Math., 24:1 (1976), 59-72.

- Theorem (Lindenstrauss, 1964). For a Banach space X the following assertions are equivalent:
(1) X is an L^{1}-predual space.
(2) Every family of 4 pairwise intersecting closed balls in X has a non-empty intersection.
(3) Every compact operator $T: Y \rightarrow X$ has, for every $\varepsilon>0$ and Banach spaces $Y, Z, Z \supset Y$, a compact extension $\hat{T}: Z \rightarrow X$ with $\|\hat{T}\| \leq(1+\varepsilon)\|T\|$.
- In complex case:
(2') Every family of 4 balls in X such that any 3 of them have a non-empty intersection, has a non-empty intersection.
- A. Lima, Complex Banach spaces whose duals are L^{1}-spaces, Israel J. Math., 24:1 (1976), 59-72.

Chebyshev Radius and Centerable Sets

- Definition. Let X be a Banach space and $A \subset X$. The diameter $\delta(A)$ of A is defined as

$$
\delta(A)=\sup \{\|a-b\|: a, b \in A\} .
$$

- Definition. The Chebyshev radius $r(A)$ of A is defined as

$$
r(A)=\inf _{x \in X} r(A, x) ; \quad r(A, x)=\sup _{a \in A}\|x-a\| \quad(x \in X) .
$$

- It is easily seen that $\delta(A) \leq 2 r(A)$.
- Definition. If $\delta(A)=2 r(A)$, then A is said to be centerable.
- E. V. Nikitenko and Yu. G. Nikonorov, The extreme polygons for the self Chebyshev radius of the boundary, 2023, arXiv:2301.03218 [math.MG]

Chebyshev Radius and Centerable Sets

- Definition. Let X be a Banach space and $A \subset X$. The diameter $\delta(A)$ of A is defined as

$$
\delta(A)=\sup \{\|a-b\|: a, b \in A\} .
$$

- Definition. The Chebyshev radius $r(A)$ of A is defined as

$$
r(A)=\inf _{x \in X} r(A, x) ; \quad r(A, x)=\sup _{a \in A}\|x-a\| \quad(x \in X)
$$

- It is easily seen that $\delta(A) \leq 2 r(A)$.
- Definition. If $\delta(A)=2 r(A)$, then A is said to be centerable.
- E. V. Nikitenko and Yu. G. Nikonorov, The extreme polygons for the self Chebyshev radius of the boundary, 2023, arXiv:2301.03218 [math.MG]

Chebyshev Radius and Centerable Sets

- Definition. Let X be a Banach space and $A \subset X$. The diameter $\delta(A)$ of A is defined as

$$
\delta(A)=\sup \{\|a-b\|: a, b \in A\} .
$$

- Definition. The Chebyshev radius $r(A)$ of A is defined as

$$
r(A)=\inf _{x \in X} r(A, x) ; \quad r(A, x)=\sup _{a \in A}\|x-a\| \quad(x \in X)
$$

- It is easily seen that $\delta(A) \leq 2 r(A)$.
- Definition. If $\delta(A)=2 r(A)$, then A is said to be centerable.
- E. V. Nikitenko and Yu. G. Nikonorov, The extreme polygons for the self Chebyshev radius of the boundary, 2023, arXiv:2301.03218 [math.MG]

Chebyshev Radius and Centerable Sets

- Definition. Let X be a Banach space and $A \subset X$. The diameter $\delta(A)$ of A is defined as

$$
\delta(A)=\sup \{\|a-b\|: a, b \in A\} .
$$

- Definition. The Chebyshev radius $r(A)$ of A is defined as

$$
r(A)=\inf _{x \in X} r(A, x) ; \quad r(A, x)=\sup _{a \in A}\|x-a\| \quad(x \in X)
$$

- It is easily seen that $\delta(A) \leq 2 r(A)$.
- Definition. If $\delta(A)=2 r(A)$, then A is said to be centerable.
polygons for the self Chebyshev radius of the boundary, 2023, arXiv:2301.03218 [math.MG]

Chebyshev Radius and Centerable Sets

- Definition. Let X be a Banach space and $A \subset X$. The diameter $\delta(A)$ of A is defined as

$$
\delta(A)=\sup \{\|a-b\|: a, b \in A\} .
$$

- Definition. The Chebyshev radius $r(A)$ of A is defined as

$$
r(A)=\inf _{x \in X} r(A, x) ; \quad r(A, x)=\sup _{a \in A}\|x-a\| \quad(x \in X)
$$

- It is easily seen that $\delta(A) \leq 2 r(A)$.
- Definition. If $\delta(A)=2 r(A)$, then A is said to be centerable.
- E. V. Nikitenko and Yu. G. Nikonorov, The extreme polygons for the self Chebyshev radius of the boundary, 2023, arXiv:2301.03218 [math.MG]

Centerability and Non-centerability: Examples

\triangle is an equilateral triangle with side length 1 ;
$\delta(\triangle)$ is the diameter of \triangle;
$r(\triangle)$ is the Chebyshev radius of \triangle.

$$
\begin{gathered}
\|(x, y)\|_{2}:=\sqrt{x^{2}+y^{2}} ; \quad\|(x, y)\|_{\infty}:=\max \{|x|,|y|\} . \\
\|(x, y)\|_{1}:=|x|+|y|
\end{gathered}
$$

$$
\begin{gathered}
\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \\
\delta(\triangle)=1 \\
<\frac{2}{\sqrt{3}}=2 r(\triangle)
\end{gathered}
$$

$$
\begin{gathered}
\left(\mathbb{R}^{2},\|\cdot\|_{1}\right) \\
\delta(\triangle)=\frac{1+\sqrt{3}}{2} \\
<\sqrt{3}=2 r(\triangle)
\end{gathered}
$$

$$
\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)
$$

$$
\delta(\triangle)=1=2 r(\triangle)
$$

Characterization of Inner Product Spaces

- Definition. The relative Chebyshev radius of A (w.r. $B \subset X$):

$$
r_{B}(A)=\inf \{r(A, x): x \in B\} .
$$

- Theorem (Garkavi, 1964; Klee, 1968). For a normed space X the following assertions are equivalent:
(1) X is an inner product space.
(2) $r_{Y}(A)=r_{X}(A)$ for every 2-dimensional subspace Y of X and every bounded $A \subset Y$.
(3) $r_{Y}(\Delta)=r_{X}(\Delta)$ for every 2-dimensional subspaee Y of X and every triplet $\Delta=\left\{y_{1}, y_{2}, y_{3}\right\} \subset Y$.
- D. Amir, Characterizations of Inner Product Spaces Birkhäuser, Basel, 1986 (Chap. 15).

Characterization of Inner Product Spaces

- Definition. The relative Chebyshev radius of A (w.r. $B \subset X$):

$$
r_{B}(A)=\inf \{r(A, x): x \in B\} .
$$

- Theorem (Garkavi, 1964; Klee, 1968). For a normed space X the following assertions are equivalent:
(1) X is an inner product space.
(2) $r_{Y}(A)=r_{X}(A)$ for every 2-dimensional subspace Y of X and every bounded $A \subset Y$.
(3) $r_{Y}(\Delta)=r_{X}(\Delta)$ for every 2-dimensional subspaee Y of X and every triplet $\Delta=\left\{y_{1}, y_{2}, y_{3}\right\} \subset Y$.
D. Amir, Characterizations of Inner Product Spaces

Birkhäuser, Basel, 1986 (Chap. 15)

Characterization of Inner Product Spaces

- Definition. The relative Chebyshev radius of A (w.r. $B \subset X$):

$$
r_{B}(A)=\inf \{r(A, x): x \in B\} .
$$

- Theorem (Garkavi, 1964; Klee, 1968). For a normed space X the following assertions are equivalent:
(1) X is an inner product space.
(2) $r_{Y}(A)=r_{X}(A)$ for every 2-dimensional subspace Y of X and every bounded $A \subset Y$.
(3) $r_{Y}(\Delta)=r_{X}(\Delta)$ for every 2-dimensional subspaee Y of X and every triplet $\Delta=\left\{y_{1}, y_{2}, y_{3}\right\} \subset Y$.
- D. Amir, Characterizations of Inner Product Spaces Birkhäuser, Basel, 1986 (Chap. 15).

Characterization of L^{1}-preduals

- Y. Duan and B.-L. Lin, Characterizations of L^{1}-predual spaces by centerable subsets, Comment. Math. Univ. Carolin. 48:2 (2007) 239-243.
- Theorem. For a real BS X the following are equivalent: (1) X is an L^{1}-predual space.
(2) Every four-point subset of X is centerable.
(3) Every finite subset of X is centerable.
(4) Every compact subset of X is centerable.
- Remarks:

A. G. Kusraev and S. S. Kutateladze

Characterization of L^{1}-preduals

- Y. Duan and B.-L. Lin, Characterizations of L^{1}-predual spaces by centerable subsets, Comment. Math. Univ. Carolin. 48:2 (2007) 239-243.
- Theorem. For a real BS X the following are equivalent:
(1) X is an L^{1}-predual space.
(2) Every four-point subset of X is centerable.
(3) Every finite subset of X is centerable.
(4) Every compact subset of X is centerable.
- Remarks:

Characterization of L^{1}-preduals

- Y. Duan and B.-L. Lin, Characterizations of L^{1}-predual spaces by centerable subsets, Comment. Math. Univ. Carolin. 48:2 (2007) 239-243.
- Theorem. For a real BS X the following are equivalent:
(1) X is an L^{1}-predual space.
(2) Every four-point subset of X is centerable.
(3) Every finite subset of X is centerable.
(4) Every compact subset of X is centerable.
- Remarks:
\checkmark The result is true also for complex Banach spaces.
$\checkmark(1) \Longleftrightarrow(3)$ is due to T.S.S.R.K Rao (2002).
\checkmark This result cannot be sharpened anymore: i.e., the centerability of every three-point subset of a real or complex Banach space X does not imply that X is an L^{1}-predual space.

II. Injective Banach Lattices and Their Preduals

- Definition. A vector lattice (VL for short) is a real vector space X equipped with a partial order \leq for which there exist $\checkmark x \vee y:=\sup \{x, y\}$, the supremum, $\checkmark x \wedge y:=\inf \{x, y\}$, the infimum, for all vectors $x, y \in X$ and such that the positive cone $\checkmark X_{+}:=\{x \in X: x \geq 0\}$ of X have the properties $\checkmark X_{+}+X_{+} \subset X_{+}, \quad \mathbb{R}_{+} \cdot X_{+} \subset X_{+}$. which is also a VL and the order is connected to the norm by where the absolute value (modulus) is defined as
- Definition. A vector lattice (VL for short) is a real vector space X equipped with a partial order \leq for which there exist
$\checkmark x \vee y:=\sup \{x, y\}$, the supremum,
$\checkmark x \wedge y:=\inf \{x, y\}$, the infimum, for all vectors $x, y \in X$ and such that the positive cone $\checkmark X_{+}:=\{x \in X: x \geq 0\}$ of X have the properties $\checkmark X_{+}+X_{+} \subset X_{+}, \quad \mathbb{R}_{+} \cdot X_{+} \subset X_{+}$.
- Definition. A Banach lattice (BL for short) is a Banach space which is also a VL and the order is connected to the norm by $\checkmark|x| \leq|y| \Longrightarrow\|x\| \leq\|y\|$ (monotonicity), where the absolute value (modulus) is defined as $\checkmark|x|:=x \vee(-x)$.

Banach Lattices: AM-spaces

- Definition. A Banach lattice X is called $A M$-space if

$$
\|x \vee y\|=\max \{\|x\|,\|y\|\} \text { for all positive } x, y \in X
$$

- Example. The space $C(K)$ of continuous functions on a compact Hausdorff space K with the supremum norm

$$
\|f\|_{\infty}:=\sup \{|f(t)|: t \in K\}(f \in C(K))
$$

$C(K)$ is order complete iff K is extremally disconnected.

- Definition. $0 \leq \mathbb{1} \in X$ is a strong order unit if $0 \in \operatorname{int}[-\mathbb{1}, \mathbb{1}]$ where $[-\mathbb{1}, \mathbb{1}]:=\{x \in X:-\mathbb{1} \leq x \leq \mathbb{1}\}$ is an order interval.
- Theorem (Br. Kreīns-Kakutani, 1941). An arbitrary $A M$-space with strong order unit is lattice isometric to $C(K)$ for some compact Hausdorff space K.

Banach Lattices: AM-spaces

- Definition. A Banach lattice X is called $A M$-space if

$$
\|x \vee y\|=\max \{\|x\|,\|y\|\} \text { for all positive } x, y \in X
$$

- Example. The space $C(K)$ of continuous functions on a compact Hausdorff space K with the supremum norm

$$
\|f\|_{\infty}:=\sup \{|f(t)|: t \in K\}(f \in C(K)) .
$$

$C(K)$ is order complete iff K is extremally disconnected.

Banach Lattices: AM-spaces

- Definition. A Banach lattice X is called $A M$-space if

$$
\|x \vee y\|=\max \{\|x\|,\|y\|\} \text { for all positive } x, y \in X
$$

- Example. The space $C(K)$ of continuous functions on a compact Hausdorff space K with the supremum norm

$$
\|f\|_{\infty}:=\sup \{|f(t)|: t \in K\}(f \in C(K)) .
$$

$C(K)$ is order complete iff K is extremally disconnected.

- Definition. $0 \leq \mathbb{1} \in X$ is a strong order unit if $0 \in \operatorname{int}[-\mathbb{1}, \mathbb{1}]$ where $[-\mathbb{1}, \mathbb{1}]:=\{x \in X:-\mathbb{1} \leq x \leq \mathbb{1}\}$ is an order interval.
Theorem (Br. Kreīns-Kakutani, 1941). An arbitrary $A M$-space with strong order unit is lattice isometric to $C(K)$ for some compact Hausdorff space

Banach Lattices: AM-spaces

- Definition. A Banach lattice X is called $A M$-space if

$$
\|x \vee y\|=\max \{\|x\|,\|y\|\} \text { for all positive } x, y \in X
$$

- Example. The space $C(K)$ of continuous functions on a compact Hausdorff space K with the supremum norm

$$
\|f\|_{\infty}:=\sup \{|f(t)|: t \in K\}(f \in C(K)) .
$$

$C(K)$ is order complete iff K is extremally disconnected.

- Definition. $0 \leq \mathbb{1} \in X$ is a strong order unit if $0 \in \operatorname{int}[-\mathbb{1}, \mathbb{1}]$ where $[-\mathbb{1}, \mathbb{1}]:=\{x \in X:-\mathbb{1} \leq x \leq \mathbb{1}\}$ is an order interval.
- Theorem (Br. Kreīns-Kakutani, 1941). An arbitrary $A M$-space with strong order unit is lattice isometric to $C(K)$ for some compact Hausdorff space K.

Banach Lattices: AL-spaces

- Definition. A Banach lattice X is an $A L$-space, provided

$$
\|x+y\|=\|x\|+\|y\| \text { for all positive } x, y \in X
$$

- Example. Given a measure space (Ω, Σ, μ), denote by $L^{0}(\Omega, \Sigma, \mu), L^{1}(\Omega, \Sigma, \mu)$, and $L^{\infty}(\Omega, \Sigma, \mu)$ respectively the vector lattice of (classes of equivalence of) all measurable integrable, essentially bounded functions on Ω. Evidently, $L^{1}(\mu):=L^{1}(\Omega, \Sigma, \mu)$ is an $A L$-space; $L^{\infty}(\mu):=L^{\infty}(\Omega, \Sigma, \mu)$ is an $A M$-space.
- Theorem (Kakutani, 1941). An AL-space X is lattice isometric to $L^{1}(\Omega, \Sigma, \mu)$ for some measure space (Ω, Σ, μ).
- Remark. Any of the vector lattices $L^{1}(\Omega, \Sigma, \mu), L^{0}(\Omega, \Sigma, \mu)$, and $L^{\infty}(\Omega, \Sigma, \mu)$ is order complete iff (Ω, Σ, μ) is localizable.

Banach Lattices: AL-spaces

- Definition. A Banach lattice X is an $A L$-space, provided

$$
\|x+y\|=\|x\|+\|y\| \text { for all positive } x, y \in X
$$

- Example. Given a measure space (Ω, Σ, μ), denote by $L^{0}(\Omega, \Sigma, \mu), L^{1}(\Omega, \Sigma, \mu)$, and $L^{\infty}(\Omega, \Sigma, \mu)$ respectively the vector lattice of (classes of equivalence of) all measurable integrable, essentially bounded functions on Ω.
Evidently, $L^{1}(\mu):=L^{1}(\Omega, \Sigma, \mu)$ is an $A L$-space;

$$
L^{\infty}(\mu):=L^{\infty}(\Omega, \Sigma, \mu) \text { is an AM-space. }
$$

Banach Lattices: AL-spaces

- Definition. A Banach lattice X is an $A L$-space, provided

$$
\|x+y\|=\|x\|+\|y\| \text { for all positive } x, y \in X
$$

- Example. Given a measure space (Ω, Σ, μ), denote by $L^{0}(\Omega, \Sigma, \mu), L^{1}(\Omega, \Sigma, \mu)$, and $L^{\infty}(\Omega, \Sigma, \mu)$ respectively the vector lattice of (classes of equivalence of) all measurable integrable, essentially bounded functions on Ω.
Evidently, $L^{1}(\mu):=L^{1}(\Omega, \Sigma, \mu)$ is an $A L$-space;

$$
L^{\infty}(\mu):=L^{\infty}(\Omega, \Sigma, \mu) \text { is an AM-space. }
$$

- Theorem (Kakutani, 1941). An $A L$-space X is lattice isometric to $L^{1}(\Omega, \Sigma, \mu)$ for some measure space (Ω, Σ, μ).

Banach Lattices: AL-spaces

- Definition. A Banach lattice X is an AL-space, provided

$$
\|x+y\|=\|x\|+\|y\| \text { for all positive } x, y \in X
$$

- Example. Given a measure space (Ω, Σ, μ), denote by $L^{0}(\Omega, \Sigma, \mu), L^{1}(\Omega, \Sigma, \mu)$, and $L^{\infty}(\Omega, \Sigma, \mu)$ respectively the vector lattice of (classes of equivalence of) all measurable integrable, essentially bounded functions on Ω.
Evidently, $L^{1}(\mu):=L^{1}(\Omega, \Sigma, \mu)$ is an $A L$-space;

$$
L^{\infty}(\mu):=L^{\infty}(\Omega, \Sigma, \mu) \text { is an } A M \text {-space. }
$$

- Theorem (Kakutani, 1941). An $A L$-space X is lattice isometric to $L^{1}(\Omega, \Sigma, \mu)$ for some measure space (Ω, Σ, μ).
- Remark. Any of the vector lattices $L^{1}(\Omega, \Sigma, \mu), L^{0}(\Omega, \Sigma, \mu)$, and $L^{\infty}(\Omega, \Sigma, \mu)$ is order complete iff (Ω, Σ, μ) is localizable.

Injective Banach Lattices: Definition

- Definition. An injective Banach lattice is a real BL X : $(\forall Y)\left(\forall Y_{0}\right)\left(\forall T_{0}\right)$

- Definition. X is an injectie Banach lattice if, whenever X is lattice isometrically imbedded into a BL Y, there is a positive contractive projection

Injective Banach Lattices: Definition

- Definition. An injective Banach lattice is a real BL X : $(\forall Y)\left(\forall Y_{0}\right)\left(\forall T_{0}\right)$

$$
\left.\begin{array}{c}
Y_{0}, Y \in(\mathrm{BL}) \\
Y_{0} \text { is a closed sublattice of } Y \\
0 \leq T_{0} \in L\left(Y_{0}, X\right)
\end{array}\right] \Longrightarrow\left[\begin{array}{c}
(\exists T) \\
0 \leq T \in L(Y, X) \\
\left.T\right|_{x_{0}=T_{0}} ^{\|T\|=\left\|T_{0}\right\|}
\end{array}\right.
$$

- Definition. X is an injectie Banach lattice if, whenever X is lattice isometrically imbedded into a BL Y, there is a positive contractive projection $Y \rightarrow X$.

Injective Banach Lattices: AL-spaces and AM-spaces

- Lotz was the first who examined the IBL in his work
H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100.
- Theorem (Abramovich, 1971; Lotz, 1975) A Dedekind complete $A M$-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every AL-space is an IBL.

Injective Banach Lattices: $A L$-spaces and $A M$-spaces

- Lotz was the first who examined the IBL in his work H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100.
- Theorem (Abramovich, 1971; Lotz, 1975) A Dedekind complete $A M$-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every AL-space is an IBL.

Injective Banach Lattices: $A L$-spaces and $A M$-spaces

- Lotz was the first who examined the IBL in his work H. P. Lotz, Trans. Amer. Math. Soc., 211 (1975), 85-100.
- Theorem (Abramovich, 1971; Lotz, 1975) A Dedekind complete $A M$-space with unit is an IBL. Equivalently, $C(K)$ is an IBL, whenever K is extremally disconnected Hausdorff compact space.
- Theorem (Lotz, 1975). Every $A L$-space is an IBL.

Injective Banach Lattices: Historical remarks

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.

Discovered that an IBL has a mixed $A M$ - $A L$-structure.
\diamond Proved three representation theorems for IBL.

- A. G. Kusraev, Siberian Math. J. 25:1 (2015), 57-65. Boolean valued approach to injective Banach lattices.
- MI Arendt, G Buskes, J. Lindenstrauss, L. Tzafriri, P. J. Mangheni, A. Wickstead.

Injective Banach Lattices: Historical remarks

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.
\diamond Discovered that an IBL has a mixed AM-AL-structure.
\diamond Proved three representation theorems for IBL.
- A. G. Kusraev, Siberian Math. J. 25:1 (2015), 57-65.

Boolean valued approach to injective Banach lattices.

- M. Arendt, G. Buskes,
J. Lindenstrauss, L. Tzafriri,
P. J. Mangheni, A. Wickstead.

Injective Banach Lattices: Historical remarks

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.
\diamond Discovered that an IBL has a mixed $A M$ - $A L$-structure.
\diamond Proved three representation theorems for IBL.
- A. G. Kusraev, Siberian Math. J. 25:1 (2015), 57-65. \diamond Boolean valued approach to injective Banach lattices.
- W. Arendt, G. Buskes, J. Lindenstrauss, L. Tzafriri,

P. J. Mangheni, A. Wickstead.

- D. I. Cartwright, Mem. Amer. Math. Soc., 164 (1975), 1-48.
\diamond The finite order IP \Longleftrightarrow The splitting property.
$\diamond \mathrm{A} \mathrm{BL} X$ has the splitting property $\Longleftrightarrow X^{\prime \prime}$ is an IBL.
- R. Haydon, Math. Z. 156 (1977), 19-47.
\diamond Discovered that an IBL has a mixed $A M-A L$-structure.
\diamond Proved three representation theorems for IBL.
- A. G. Kusraev, Siberian Math. J. 25:1 (2015), 57-65.
\diamond Boolean valued approach to injective Banach lattices.
- W. Arendt, G. Buskes,
J. Lindenstrauss, L. Tzafriri,
P. J. Mangheni, A. Wickstead.

Injective Banach Lattices: Representation

- Definition A measure $\mathbf{m}: \Sigma \rightarrow C(K)$ is called modular if there is a unital algebra-homomorphism $\pi: C(K) \rightarrow L^{\infty}(\mathbf{m})$ such that the relation holds:

$$
\int(\pi f) \cdot g d \mathbf{m}=f \cdot \int g d \mathbf{m} \quad\left(f \in C(K), g \in L^{1}(\mathbf{m})\right)
$$

- Definition A measure $m: \Sigma \rightarrow C(K)$ is called Maharam if m is modular and $L^{\infty}(\mathbf{m})$ is Dedekind complete. Theorem (Haydon, 1977). The following assertions hold: (1) $L^{1}(\mathrm{~m})$ is an IBL for any Maharam $C(K)$-measure m. (2) For every IBL X there exist a Stonian space K, a σ-algebra Σ, and a Maharam measure $\mathbf{m}: \Sigma \rightarrow C(K)$ such that X is isometrically lattice isomorphic to $L^{1}(\mathrm{~m})$.
- Definition A measure $\mathbf{m}: \Sigma \rightarrow C(K)$ is called modular if there is a unital algebra-homomorphism $\pi: C(K) \rightarrow L^{\infty}(\mathbf{m})$ such that the relation holds:

$$
\int(\pi f) \cdot g d \mathbf{m}=f \cdot \int g d \mathbf{m} \quad\left(f \in C(K), g \in L^{1}(\mathbf{m})\right) .
$$

- Definition A measure $\mathbf{m}: \Sigma \rightarrow C(K)$ is called Maharam if \mathbf{m} is modular and $L^{\infty}(\mathbf{m})$ is Dedekind complete.

- Definition A measure $\mathbf{m}: \Sigma \rightarrow C(K)$ is called modular if there is a unital algebra-homomorphism $\pi: C(K) \rightarrow L^{\infty}(\mathbf{m})$ such that the relation holds:

$$
\int(\pi f) \cdot g d \mathbf{m}=f \cdot \int g d \mathbf{m} \quad\left(f \in C(K), g \in L^{1}(\mathbf{m})\right) .
$$

- Definition A measure $\mathbf{m}: \Sigma \rightarrow C(K)$ is called Maharam if \mathbf{m} is modular and $L^{\infty}(\mathbf{m})$ is Dedekind complete.
- Theorem (Haydon, 1977). The following assertions hold: (1) $L^{1}(\mathbf{m})$ is an IBL for any Maharam $C(K)$-measure \mathbf{m}.
(2) For every IBL X there exist a Stonian space K, a σ-algebra Σ, and a Maharam measure $\mathbf{m}: \Sigma \rightarrow C(K)$ such that X is isometrically lattice isomorphic to $L^{1}(\mathbf{m})$.

A Lindenstrauss Type Problem for IBL

- Problem: Classify and characterize the predual to IBS.
- A. G. Kusraev and A. W. Wickstead, Some Problems Concerning Operators on Banach Lattices. Vladikavkaz, 2016. (Preprint / SMI VSC RAS; Problem 5.15).
- Some related publications:
\checkmark A. G. Kusraev, Boolean valued analysis and injective Banach lattices, Dokl. Ross. Akad. Nauk 444 (2012), 143-145. \checkmark A. G. Kusraev, Injective Banach lattices: a survey, Eurasian Math. J. 5 2014, 58-79.
\checkmark A. G. Kusraev, Concrete representation of injective Banach lattices, Math. Meth. Appl. Sci., (2020), 1-10.

A Lindenstrauss Type Problem for IBL

- Problem: Classify and characterize the predual to IBS.
- A. G. Kusraev and A. W. Wickstead, Some Problems Concerning Operators on Banach Lattices. Vladikavkaz, 2016. (Preprint / SMI VSC RAS; Problem 5.15).
- Some related publications:
\checkmark A. G. Kusraev, Boolean valued analysis and injective Banach lattices, Dokl. Ross. Akad. Nauk 444 (2012), 143-145 \checkmark A. G. Kusraev, Injective Banach lattices: a survey, Eurasian Math. J. 5 2014, 58-79.
\checkmark A. G. Kusraev, Concrete representation of injective Banach lattices, Math. Meth. Appl. Sci., (2020), 1-10.

A Lindenstrauss Type Problem for IBL

- Problem: Classify and characterize the predual to IBS.
- A. G. Kusraev and A. W. Wickstead, Some Problems Concerning Operators on Banach Lattices. Vladikavkaz, 2016. (Preprint / SMI VSC RAS; Problem 5.15).
- Some related publications:
\checkmark A. G. Kusraev, Boolean valued analysis and injective Banach lattices, Dokl. Ross. Akad. Nauk 444 (2012), 143-145. \checkmark A. G. Kusraev, Injective Banach lattices: a survey, Eurasian Math. J. 5 2014, 58-79.
\checkmark A. G. Kusraev, Concrete representation of injective Banach lattices, Math. Meth. Appl. Sci., (2020), 1-10.

III. Boolean Valued Transfer Principle

What Is Boolean Valued Analysis?

- Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially-trimmed Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires some ascending-descending machinery to carry out the interplay between \mathbb{V} and $\mathbb{V}(\mathbb{B})$

What Is Boolean Valued Analysis?

- Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially-trimmed Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires some ascending-descending machinery to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.

What Is Boolean Valued Analysis?

- Boolean valued analysis is a branch of functional analysis which uses a special model-theoretic technique and consists in studying the properties of a mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras.
- The von Neumann universe (Cantorian paradise) \mathbb{V} and a specially-trimmed Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ are taken as these models.
- The comparative analysis requires some ascending-descending machinery to carry out the interplay between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$.

Interplay Between \mathbb{V} and $\mathbb{V}^{(\mathbb{B})}$

$L^{0}(\mu):=L^{0}(\Omega, \Sigma, \mu)$, the space (of classes) of integrable functions with respect to a measure $\mu: \Sigma \rightarrow \mathbb{R}$.
$\mathbb{B}:=\Sigma / \mu^{-1}(0)$ Boolean algebra of all measurable sets modulo μ-null sets.
$\llbracket \varphi \rrbracket \in \mathbb{B}$ is the Boolean truth value of ZFC formuls φ

A. G. Kusraev and S. S. Kutateladze

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2012). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A Transfer Principle. Each theorem about the AL-space within Zermelo-Fraenkel set theory has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued AL-space.
- The Machinery. Translation of theorems from $A L$-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.
- A. G. Kusraev and S. S. Kutateladze: \checkmark Boolean Valued Analysis, Dordrecht, Kluwer (1999) \checkmark Introduction to Boolean Valued Analysis, Moscow, Nauka (2005) [Russian]

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2012). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A Transfer Principle. Each theorem about the $A L$-space within Zermelo-Fraenkel set theory has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued AL-space.
- The Machinery. Translation of theorems from AL-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.
- A. G. Kusraev and S. S. Kutateladze:

Boolean Valued Analysis, Dordrecht, Kluwer (1999).
Introduction to Boolean Valued Analysis,
Moscow, Nauka (2005) [Russian]

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2012). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A Transfer Principle. Each theorem about the $A L$-space within Zermelo-Fraenkel set theory has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued AL-space.
- The Machinery. Translation of theorems from $A L$-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.

> Boolean Valued Analysis, Dordrecht, Kluwer (1999)
> Introduction to Boolean Valued Analysis,
> Moscow, Nauka (2005) [Russian]

A Boolean-Valued Transfer Principle

- Theorem (Kusraev, 2012). Every IBL embeds into an appropriate Boolean-valued model, becoming an AL-space.
- A Transfer Principle. Each theorem about the $A L$-space within Zermelo-Fraenkel set theory has its counterpart for the original injective Banach lattice interpreted as a Boolean-valued $A L$-space.
- The Machinery. Translation of theorems from $A L$-spaces to injective Banach lattices is carried out by appropriate general operations and principles of Boolean-valued analysis.
- A. G. Kusraev and S. S. Kutateladze:
\checkmark Boolean Valued Analysis, Dordrecht, Kluwer (1999).
\checkmark Introduction to Boolean Valued Analysis,
Moscow, Nauka (2005) [Russian].

L-Projections and M-Projections

- Definition. A projection π on a Banach space X is said to be: an M-projection if $\|x\|=\|\pi x\|+\|x-\pi x\|$ for all $x \in X$; an L-projection if $\|x\|=\max \{\|\pi x\|,\|x-\pi x\|\}$ for all $x \in X$. L-projections and M-projections on X.
- A Boolean algebra of projections on X is a commuting set \mathbb{B} of linear norm one projections in X with:

Theorem (Cunningham, 1960). For a BS space X (1) - (3) hold:
(1) $\mathbb{P}_{L}(X)$ is a complete (Badé complete) Boolean algebra. (2) $\mathbb{P}_{M}(X)$ is a (generally not complete) Boolean algebra. (3) If X^{\prime} is the dual of X then $\mathbb{P}_{M}\left(X^{\prime}\right)$ is isomorphic to $\mathbb{P}_{l}(X)$.

L-Projections and M-Projections

- Definition. A projection π on a Banach space X is said to be: an M-projection if $\|x\|=\|\pi x\|+\|x-\pi x\|$ for all $x \in X$; an L-projection if $\|x\|=\max \{\|\pi x\|,\|x-\pi x\|\}$ for all $x \in X$.
- Notation. $\mathbb{P}_{L}(X)$ and $\mathbb{P}_{M}(X)$ denote the sets of all L-projections and M-projections on X.
- A Boolean algebra of projections on X is a commuting set \mathbb{B} of linear norm one projections in X with:

Theorem (Cunningham, 1960). For a BS space X (1) - (3) hold:
(1) $\mathbb{P}_{\mathbb{L}}(X)$ is a complete (Badé complete) Boolean algebra. (2) $\mathbb{P}_{M}(X)$ is a (generally not complete) Boolean algebra (3) If X^{\prime} is the dual of X then $\mathbb{P}_{M}\left(X^{\prime}\right)$ is isomorphic to $\mathbb{P}_{L}(X)$.

L-Projections and M-Projections

- Definition. A projection π on a Banach space X is said to be: an M-projection if $\|x\|=\|\pi x\|+\|x-\pi x\|$ for all $x \in X$; an L-projection if $\|x\|=\max \{\|\pi x\|,\|x-\pi x\|\}$ for all $x \in X$.
- Notation. $\mathbb{P}_{L}(X)$ and $\mathbb{P}_{M}(X)$ denote the sets of all L-projections and M-projections on X.
- A Boolean algebra of projections on X is a commuting set \mathbb{B} of linear norm one projections in X with:

$$
\pi \wedge \rho:=\pi \circ \rho, \quad \pi \vee \rho:=\pi+\rho-\pi \circ \rho, \quad \pi^{\perp}:=I_{X}-\pi
$$

L-Projections and M-Projections

- Definition. A projection π on a Banach space X is said to be: an M-projection if $\|x\|=\|\pi x\|+\|x-\pi x\|$ for all $x \in X$; an L-projection if $\|x\|=\max \{\|\pi x\|,\|x-\pi x\|\}$ for all $x \in X$.
- Notation. $\mathbb{P}_{L}(X)$ and $\mathbb{P}_{M}(X)$ denote the sets of all L-projections and M-projections on X.
- A Boolean algebra of projections on X is a commuting set \mathbb{B} of linear norm one projections in X with:

$$
\pi \wedge \rho:=\pi \circ \rho, \quad \pi \vee \rho:=\pi+\rho-\pi \circ \rho, \quad \pi^{\perp}:=I_{X}-\pi
$$

- Theorem (Cunningham, 1960). For a BS space $X(1)$ - (3) hold:
(1) $\mathbb{P}_{L}(X)$ is a complete (Badé complete) Boolean algebra.
(2) $\mathbb{P}_{M}(X)$ is a (generally not complete) Boolean algebra.
(3) If X^{\prime} is the dual of X then $\mathbb{P}_{M}\left(X^{\prime}\right)$ is isomorphic to $\mathbb{P}_{L}(X)$.
- Notation. For a nonempty $A \subset X$ and nonzero $\pi \in \mathbb{B}$ denote:

$$
\begin{gathered}
\delta_{\pi}(A)=\sup \{\|\pi(a-b)\|: a, b \in A\} \quad(\pi \text {-diameter of } A) . \\
r_{\pi}(A)=\inf _{x \in X} r_{\pi}(A, x) \quad(\text { Chebyshev } \pi \text {-radius of } A) ; \\
r_{\pi}(A, x)=\sup _{a \in A}\|\pi(x-a)\| \quad(\text { for all } x \in X) .
\end{gathered}
$$

- Proposition. It is easily seen that $\delta_{\pi}(A) \leq 2 r_{\pi}(A)$.
- Definition. If $\delta_{\pi}(A)=2 r_{\pi}(A)$ for all $\pi \in \mathbb{B}$, then A is said to be \mathbb{B}-centerable.
- Remark. If X^{\prime} is an IBL then $\mathbb{B}=\Sigma / \mu^{-1}(0)$ and $L^{1}(\mathbb{B}, \mu):=L^{1}(\Omega, \Sigma, \mu)$ for some (Ω, Σ, μ).
- Definition. Denote $\mathbb{B}:=\mathbb{P}_{L}(X)$ and take $a \in X$ and $r \in L^{1}(\mathbb{B}, \mu)$. $A \mathbb{B}$-cell in X is a set of the form

- Notation. For a nonempty $A \subset X$ and nonzero $\pi \in \mathbb{B}$ denote:

$$
\begin{gathered}
\delta_{\pi}(A)=\sup \{\|\pi(a-b)\|: a, b \in A\} \quad(\pi \text {-diameter of } A) . \\
r_{\pi}(A)=\inf _{x \in X} r_{\pi}(A, x) \quad(\text { Chebyshev } \pi \text {-radius of } A) ; \\
r_{\pi}(A, x)=\sup _{a \in A}\|\pi(x-a)\| \quad(\text { for all } x \in X) .
\end{gathered}
$$

- Proposition. It is easily seen that $\delta_{\pi}(A) \leq 2 r_{\pi}(A)$.
- Definition. If $\delta_{\pi}(A)=2 r_{\pi}(A)$ for all $\pi \in \mathbb{B}$, then A is said to be \mathbb{B}-centerable.
- Remark. If X^{\prime} is an $\mid B L$ then $\mathbb{B}=\Sigma / \mu^{-1}(0)$ and $L^{1}(\mathbb{B}, \mu):=L^{1}(\Omega, \Sigma, \mu)$ for some (Ω, Σ, μ).
- Definition. Denote $\mathbb{B}:=\mathbb{P}_{L}(X)$ and take $a \in X$ and $r \in L^{1}(\mathbb{B}, \mu)$. A \mathbb{B}-cell in X is a set of the form
- Notation. For a nonempty $A \subset X$ and nonzero $\pi \in \mathbb{B}$ denote:

$$
\begin{gathered}
\delta_{\pi}(A)=\sup \{\|\pi(a-b)\|: a, b \in A\} \quad(\pi \text {-diameter of } A) . \\
r_{\pi}(A)=\inf _{x \in X} r_{\pi}(A, x) \quad(\text { Chebyshev } \pi \text {-radius of } A) ; \\
r_{\pi}(A, x)=\sup _{a \in A}\|\pi(x-a)\|(\text { for all } x \in X) .
\end{gathered}
$$

- Proposition. It is easily seen that $\delta_{\pi}(A) \leq 2 r_{\pi}(A)$.
- Definition. If $\delta_{\pi}(A)=2 r_{\pi}(A)$ for all $\pi \in \mathbb{B}$, then A is said to be \mathbb{B}-centerable.
- Remark. If X^{\prime} is an IBL then $\mathbb{B}=\Sigma / \mu^{-1}(0)$ and $L^{1}(\mathbb{B}, \mu):=L^{1}(\Omega, \Sigma, \mu)$ for some (Ω, Σ, μ).
- Definition. Denote $\mathbb{R}:=\mathbb{D}_{L}(X)$ and take $a \in X$ and $r \in L^{1}(\mathbb{B}, \mu)$. A \mathbb{B}-cell in X is a set of the form
$B(a, r):=\left\{x \in X:\|\pi(x-a)\| \leq\|\pi r\|_{L}\right.$ for all $\left.\pi \in \mathbb{B}\right\}$.
- Notation. For a nonempty $A \subset X$ and nonzero $\pi \in \mathbb{B}$ denote:

$$
\begin{gathered}
\delta_{\pi}(A)=\sup \{\|\pi(a-b)\|: a, b \in A\} \quad(\pi \text {-diameter of } A) . \\
r_{\pi}(A)=\inf _{x \in X} r_{\pi}(A, x) \quad(\text { Chebyshev } \pi \text {-radius of } A) ; \\
r_{\pi}(A, x)=\sup _{a \in A}\|\pi(x-a)\| \quad(\text { for all } x \in X) .
\end{gathered}
$$

- Proposition. It is easily seen that $\delta_{\pi}(A) \leq 2 r_{\pi}(A)$.
- Definition. If $\delta_{\pi}(A)=2 r_{\pi}(A)$ for all $\pi \in \mathbb{B}$, then A is said to be \mathbb{B}-centerable.
- Remark. If X^{\prime} is an IBL then $\mathbb{B}=\Sigma / \mu^{-1}(0)$ and $L^{1}(\mathbb{B}, \mu):=L^{1}(\Omega, \Sigma, \mu)$ for some (Ω, Σ, μ).
- Definition. Denote $\mathbb{B}:=\mathbb{P}_{L}(X)$ and take $a \in X$ and $r \in L^{1}(\mathbb{B}, \mu)$. A \mathbb{B}-cell in X is a set of the form $B(a, r):=\left\{x \in X:\|\pi(x-a)\| \leq\|\pi r\|_{L}\right.$ for all $\left.\pi \in \mathbb{B}\right\}$.
- Notation. For a nonempty $A \subset X$ and nonzero $\pi \in \mathbb{B}$ denote:

$$
\begin{gathered}
\delta_{\pi}(A)=\sup \{\|\pi(a-b)\|: a, b \in A\} \quad(\pi \text {-diameter of } A) . \\
r_{\pi}(A)=\inf _{x \in X} r_{\pi}(A, x) \quad(\text { Chebyshev } \pi \text {-radius of } A) ; \\
r_{\pi}(A, x)=\sup _{a \in A}\|\pi(x-a)\| \quad(\text { for all } x \in X) .
\end{gathered}
$$

- Proposition. It is easily seen that $\delta_{\pi}(A) \leq 2 r_{\pi}(A)$.
- Definition. If $\delta_{\pi}(A)=2 r_{\pi}(A)$ for all $\pi \in \mathbb{B}$, then A is said to be \mathbb{B}-centerable.
- Remark. If X^{\prime} is an IBL then $\mathbb{B}=\Sigma / \mu^{-1}(0)$ and $L^{1}(\mathbb{B}, \mu):=L^{1}(\Omega, \Sigma, \mu)$ for some (Ω, Σ, μ).
- Definition. Denote $\mathbb{B}:=\mathbb{P}_{L}(X)$ and take $a \in X$ and $r \in L^{1}(\mathbb{B}, \mu)$. A \mathbb{B}-cell in X is a set of the form $B(a, r):=\left\{x \in X:\|\pi(x-a)\| \leq\|\pi r\|_{L}\right.$ for all $\left.\pi \in \mathbb{B}\right\}$.

Characterization via Intersection Property

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an injective Banach lattice with $\mathbb{B}:=\mathbb{P}_{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every collection of four mutually intersecting \mathbb{B}-cells in X has nonempty intersection.
- (3) Every collection of four mutually intersecting B-cells in X whose centers span a ($\mathbb{B}, 2$)-dimensional subspace has nonempty intersection.

Characterization via Intersection Property

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an injective Banach lattice with $\mathbb{B}:=\mathbb{P}_{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every collection of four mutually intersecting \mathbb{B}-cells in X has nonempty intersection.
- (3) Every collection of four mutually intersecting \mathbb{B}-cells in X whose centers span a ($\mathbb{B}, 2$)-dimensional subspace has nonempty intersection.

Characterization via Intersection Property

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an injective Banach lattice with $\mathbb{B}:=\mathbb{P}_{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every collection of four mutually intersecting \mathbb{B}-cells in X has nonempty intersection.
- (3) Every collection of four mutually intersecting \mathbb{B}-cells in X whose centers span a ($\mathbb{B}, 2$)-dimensional subspace has nonempty intersection.

Characterization of IBL-Preduals

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an IBL with $\mathbb{B}:=\mathbb{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every four-point subset of X is \mathbb{B}-centerable.
- (3) Every finite subset of X is \mathbb{B}-centerable.
- (4) Every \mathbb{B}-bounded mix-compact subset of X is \mathbb{B}-centerable.
- (5) For every mix-compact subset A of X there exists a partition of unity $\left(\pi_{\xi}\right)_{\xi \in \equiv \text { in }} \mathbb{B}$ such that $\pi_{\xi} A$ is $\pi_{\xi} \mathbb{B}$-centerable in $\pi_{\xi} X$ for all $\xi \in$ 三.

Characterization of IBL-Preduals

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an IBL with $\mathbb{B}:=\mathbb{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every four-point subset of X is \mathbb{B}-centerable.
- (3) Every finite subset of X is \mathbb{B}-centerable.
- (4) Every \mathbb{B}-bounded mix-compact subset of X is \mathbb{B}-centerable.
- (5) For every mix-compact subset A of X there exists a partition of unity $\left(\pi_{\xi}\right)_{\xi \in \equiv}$ in \mathbb{B} such that $\pi_{\xi} A$ is $\pi_{\xi} \mathbb{B}$-centerable in $\pi_{\xi} X$ for all $\xi \in$ 三.

Characterization of IBL-Preduals

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an IBL with $\mathbb{B}:=\mathbb{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every four-point subset of X is \mathbb{B}-centerable.
- (3) Every finite subset of X is \mathbb{B}-centerable.
- (4) Every \mathbb{B}-bounded mix-compact subset of X is \mathbb{B}-centerable.
- (5) For every mix-compact subset A of X there exists a partition of unity $\left(\pi_{\xi}\right)_{\xi \in \equiv \text { in }} \mathbb{B}$ such that $\pi_{\xi} A$ is $\pi_{\xi} \mathbb{B}$-centerable in $\pi_{\xi} X$ for all $\xi \in \overline{\text {. }}$

Characterization of IBL-Preduals

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an IBL with $\mathbb{B}:=\mathbb{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every four-point subset of X is \mathbb{B}-centerable.
- (3) Every finite subset of X is \mathbb{B}-centerable.
- (4) Every \mathbb{B}-bounded mix-compact subset of X is \mathbb{B}-centerable.
- (5) For every mix-compact subset A of X there exists a partition of unity $\left(\pi_{\xi}\right)_{\xi \in \equiv \text { in }} \mathbb{B}$ such that $\pi_{\xi} A$ is $\pi_{\xi} \mathbb{B}$-centerable in $\pi_{\xi} X$ for all $\xi \in$ 三.

Characterization of IBL-Preduals

Theorem. For a real Banach space X the following are equivalent:

- (1) X^{\prime} is an IBL with $\mathbb{B}:=\mathbb{M}\left(X^{\prime}\right) \simeq \mathbb{P}_{L}(X)$.
- (2) Every four-point subset of X is \mathbb{B}-centerable.
- (3) Every finite subset of X is \mathbb{B}-centerable.
- (4) Every \mathbb{B}-bounded mix-compact subset of X is \mathbb{B}-centerable.
- (5) For every mix-compact subset A of X there exists a partition of unity $\left(\pi_{\xi}\right)_{\xi \in \equiv}$ in \mathbb{B} such that $\pi_{\xi} A$ is $\pi_{\xi} \mathbb{B}$-centerable in $\pi_{\xi} X$ for all $\xi \in$ 三.

THANK YOU FOR ATTENTION

